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APPLICABILITY OF BOUNDARY-LAYER THEORY TO 

CALCULATION OF HEAT TRANSFER UNDER 

SEPARATION CONDITIONS 

Yu. F. Gortyshov and I. M. Varfolomeev UDC 536.25 

The conditions are examined under which methods and relations developed for attachment flow are applicable to 
regions of separation flow. 

Recently, the number of experimental and theoretical studies has been increasing where the authors examine the 
possibihty of calculating the processes during separation by the method based on the theory of a boundary layer in non- 
separation streamlining, this method having been rather thoroughly tested for a wide range of applications. The problem 
has not only great practical but also fundamental theoretical importance, inasmuch as studied pertaining to it will reveal 
differences between the physics of separation flow and the physics of attachment flow. No single view on this matter has 
yet been developed, apparently because of the multitude of modes and forms of separation flow. There is no doubt that 
the possibility of applying the relations varied for attachment flow to conditions of separation flow must be examined 
individually in each specific case. 

An important aspect of the problem is determining whether there exists an analogy between friction and heat 
transfer in separation flow. For determining the friction in this study the authors used a known indirect method [1, 2]. 
In accordance with that method, the frictional velocity (or dynamic velocity) was selected so as to ensure the required 
direction of the measured velocity near the wall. The method was used here for determining the friction in two-dimensional 
groovesstreamlined by a compressible gas. The study covered a wide range of parameter variation: of the relative groove 
depth H = H/L from 0 to 1.0 and the Reynolds number NRe = UeX/U in the stre0m core from 2.5"10 s to 3.5"106, with 

the Mach number NMa equal to 3.5, 4.0, and 4.5 successively. 

On the graph in Fig. l are indicated the readings of velocity obtained with a total-head Pitot tube near the wall at 
four sections along the x-coordinate in grooves of various depths. The frictional velocity had been selected so as to make 
the experimental points fit on the Karman curve for a buffer layer with u* = -3.05 + 5 (In y*) within the 5 -<. y* ~< 30 
range, with u* = u/u r and y* = yuT/N. 

"A. N. Tupolev" Kazan Institute of Aviation. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 43, No. 3, pp. 
397-401, September, 1982. Original article submitted March 17, 1981. 
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Fig. 1. Determination of  frictional velocity 
from readings of  veloci tyat  bot tom of 
groove: 1) H =  1.0, 2) H = 0 . 4 8 6 , 3 ) H  = 
0.104; 4) Karman curve for buffer layer u* = 
-3 .05 + 5(ln y*); a) x/L = 0.167; b) x/L = 
0.389; c) x/L = 0.611; d) 0.833. 
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Fig. 2. Relation between heat transfer and 
friction: 1) H = 1.0; 2) 0.486; 3) 0.104. 

It was possible to approximate the Karman curve for a buffer layer most closely in the intermediate sections at 
x/L ; 0.389 and x/L = 0.611 at the bottom of grooves. The approximateness of the method used here is obvious, but the 
validity of its application here is confirmed by a comparison of the magnitude of  shear stress according to calculations in 
this study with that according to measurements by the electrodiffusion method in another study [3 ]. There the authors 
measured the friction coefficients at the walls of a square and deeper grooves. A comparison of our data in the form of the 

/ P u  e 2ruReL 0.23 ~..2 = f(x/H)relation with the data in that other study [3] reveals a close qualitative agreement, which including 

the Prandtl number Npr (cf/2 % Npr -~ will further confirm also a satisfactory quantitative agreement. 

Earlier reports [4, 5] cover the results of an experimental study of  the heat transfer in grooves over the same range 

of H, NRe, and NMa as in this one. In order to facilitate an analysis of  the relation between friction and heat transfer in a 

groove, the results of  these experiments with heat transfer and the results of friction measurements shown here have been 
presented in the form of the NSt = f(cf/2) relation (Fig. 2). The relation shown here graphically and describable by the 

equation of a straight line (Nst = cf/2) corresponds to the Reynolds analogy. All experimental points lie above this straight 

line, which suggests that the Reynolds analogy does not apply to such a type of separation flow and application of this 
analogy here will result in underestimates of the heat transfer intensity. 

The analogy between friction and heat transfer is most closely approximated by points characterizing the relation 
between these two processes in a square groove. This indicates that it may be possible to approximately calculate the heat 
transfer in deep grooves (H = 1.0) on the basis of  available data on the distribution surface friction in them. In shallower 
grooves there appear appreciable deviations from that analogy and the latter can be used only with corrections, the magnitude 
of these corrections decreasing as the depth of a groove increases. Therefore, the applicability of the Reynolds analogy must 
be examined individually in each specific case. It is necessary to identify the factors (determine their magnitudes and distri- 
butions) which may cause departures from that analogy and then account for them in corrections. Outstanding among these 
factors are pressure gradient [6], nonisothermality (Tw/Te), and the Prandtl number [71. Calculation of such corrections 

according to certain known methods [6, 7] (on the assumption that the effect of  the disturbing factors on the analogy is the 
same in separation flow and in attachment flow~ has revealed that their magnitude depends on x/L, varying from 1.05 to 
1.27 for H = 0.486 and from 1.05 to 1.65 for H = 0.104, respectively. However, the deviation of experimental point from 
the Reynolds analogy (Fig. 2) exceeds these corrections. One can conclude, therefore, that separation flow has peculiar fea- 
tures which cause departure from the analogy or that the effects of said factors (Op/Ox, Tw/T e, Npr) on the relation between 

heat transfer and friction are different in separation flow and in attachment flow. 
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Fig. 3. Use of integral methods for calculation of heat transfer in 
grooves: a) method of effective length; b) method of  local modeling; 
1) H = 1.0; 2) 0.486; 3) 0.104. 

Quite interesting is the question as to whether the similarity equations for plates are applicable to separation flow. 
On account of the strong irregularity of  parameters in a groove, it is apparently worthwhile to isolate structurally homo- 
geneous segments where there are no large pressure and velocity gradients and where the direction of flow does not change 
as some analog of a plate in terms of  flow pattern. Such segments include, for instance, the region of a boundary layer 
formed at the bottom of a groove through interaction of  the bottom surface and the primary vortex. 

In two other studies [8, 9] there has been, outlined a method of calculating laminar and turbulent boundary layers 
in streams with pressure gradient. The gist of this method is to apply the relations for a straight plate at each point of  the 
given body, provided that the true !ength along the surface has been replaced with some effective length based on integral 
relations. In the simple case of  two-dimensional flow this effective length is related to the stream parameters through the 
equality 

x e ~ - u p d x .  ( 1 )  
u p  . 

0 

The effective length for reverse flow in a groove was read from the starting point of the boundary layer, this point 
having been determined from the results of  visualization by means of  flash photography and according to the oil film 
method (Fig. 3a). Processing of  the experimental data according to this method has yielded a qualitative relation between 
the Reynolds number and the Nusselt number in satisfactory agreement with the law of nonseparation-flow streamlining of 
a surface by a turbulent boundary layer (NNu % NRe ~ (Fig. 3a). The evident stratification of  points at various depths of  

a groove suggests that in an analysis of  separation-flow streamlining of  a groove there must be taken into account additional 
factors influencing the heat transfer such as, for instance, a higher turbulence level. Unfortunately, the scarcity of  tests 
performed with measurement of  local velocities in grooves makes it impossible to identify the effect of these factors 
quantitatively and to establish a generalized relation including parameters of  the boundary layer at various depths. Never- 
theless the conclusion about applicability of  the relations for a plate to streamlining of a groove, based on analysis of data 
(Fig. 3a), is entirely legitimate. It is furthermore noteworthy that this method, one basic premise here being the absence of  
any secondary flow (hypersonic streamlining of  bodies oriented at wide angles of  attack, of  bodies with very blunt surfaces, 
etc.), applies only to regions with one particular mode of flow. Thus the linear relation between log NNu e and log NRe e 

N 0 8 holds true within the zone of  the primary vortex in a square groove. At corresponding to the relation NNu e * Re e , 

the depth H = 0.486 here the last point, w_hich lies within the zone of  the secondary vortex, departs from the general 
pattern. This departure is even farther at H = 0.104, inasmuch as the dimensions of  the secondary vortex become comparable 
with those of  the primary one. 

Therefore, application of  the method in studies [8, 9] to grooves must be based on a differentiated approach to the 
various zones of  the boundary layer, taking into account the direction of the stream within each zone. 

In the course of  this study was also checked the possibility of  calculating the heat transfer in a groove on the basis 
of the theory of  local modeling for a plate. The integral relation for energy in this case is expressed as [ 10] 

~R~r ~~ ~NROT** d(AT) (2) 
dTc A T  d x  = NRe L N St' 

** A-T-2 i where NRe~ - -  k N p r , ;  qw (X) d x  and AT is the temperature drop from .the wall to the surrounding stream. 

0 

It may be noted~that only in the case of sufficiently deep grooves (H -- 0.486, 1.0) does the Stanton number depend 

on the Reynolds number to a degree approaching the relation NSt ,x, ~l,Re T t ~ , r  **~-o.2s, for streamlining of  a plate. In a shallow 

groove (H = 0.104), just as in Fig. 3a, the relation departs from that for streamlining of  a plate. 
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NOTATION 

H, depth of a groove; L, length of a groove; u e, velocity of the stream core before separation; v, viscosity of the 

fluid; k, thermal conductivity of the fluid; x, longitudinal coordinate on the bottom of a groove measured from the front 

wall; u is the local velocity; u = K ~ ,  frictional velocity; r, shear stress; p, density of the fluid; y, normal coordinate; 

NSt, local Stanton number; cf, frictional drag coefficient; p, pressure; NNu, Nusselt number; N_R e, Reynolds number; 

NRe~*, Reynolds number based on the energy-loss layer thickness; q(x), local thermal flux; x = x/L, referred longitudinal 

coordinate; and subscripts e, w refer to stream core and wall, respectively. 
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